Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genomics ; 116(3): 110824, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38485062

RESUMEN

Aralia elata is an Araliaceae woody plant species found in Northeastern Asia. To understand how genetic pools are distributed for A.elata clones, we were to analyze the population structure of A.elata cultivars and identify how these are correlated with thorn-related phenotype which determines the utility of A.elata. We found that the de novo assembled genome of 'Yeongchun' shared major genomic compartments with the public A.elata genome assembled from the wild-type from China. To identify the population structure of the 32 Korean and Japanese cultivars, we identified 44 SSR markers and revealed three main sub-clusters using ΔK analysis with one isolated cultivar. Machine-learning based clustering with thorn-related phenotype correlated moderately with population structure based on SSR analysis suggested multi-layered genetic regulation of thorn-related phenotypes. Thus, we revealed genetic lineage of A.elata and uncovered isolated cultivar which can provide new genetic material for further breeding.

2.
Phytopathology ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451552

RESUMEN

Pine, an evergreen conifer, is widely distributed worldwide. It is economically, scientifically, and ecologically important. However, pine wilt disease (PWD) induced by the pine wood nematode (PWN) adversely affects pine trees. Many studies have been conducted on PWN and their beetle vectors to prevent the spread of PWD. However, studies providing a comprehensive understanding of the pine tree transcriptome in response to PWN infection are lacking. Here, we performed temporal profiling of the pine tree transcriptome using PWD-infected red pine trees, Pinus densiflora, inoculated with PWN by RNA-sequencing. Our analysis revealed that defense-responsive genes involved in cell wall modification, jasmonic acid signaling, and phenylpropanoid-related processes were significantly enriched 2 weeks after PWD infection. Furthermore, some WRKY-type and MYB-type transcription factors were upregulated 2 weeks after PWD, suggesting that these transcription factors might be responsible for the genome-wide reprogramming of defense-responsive genes in the early PWD stage. Our comprehensive transcriptome analysis will assist in developing PWD resistant pine trees, and identifying genes to diagnose PWD at the early stage of infection, during which large-scale phenotypic changes are absent in PWD-infected pine trees.

3.
Front Plant Sci ; 15: 1285094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322820

RESUMEN

Traditionally, selective breeding has been used to improve tree growth. However, traditional selection methods are time-consuming and limit annual genetic gain. Genomic selection (GS) offers an alternative to progeny testing by estimating the genotype-based breeding values of individuals based on genomic information using molecular markers. In the present study, we introduced GS to an open-pollinated breeding population of Korean red pine (Pinus densiflora), which is in high demand in South Korea, to shorten the breeding cycle. We compared the prediction accuracies of GS for growth characteristics (diameter at breast height [DBH], height, straightness, and volume) in Korean red pines under various conditions (marker set, model, and training set) and evaluated the selection efficiency of GS compared to traditional selection methods. Training the GS model to include individuals from various environments using genomic best linear unbiased prediction (GBLUP) and markers with a minor allele frequency larger than 0.05 was effective. The optimized model had an accuracy of 0.164-0.498 and a predictive ability of 0.018-0.441. The predictive ability of GBLUP against that of additive best linear unbiased prediction (ABLUP) was 0.86-5.10, and against the square root of heritability was 0.19-0.76, indicating that GS for Korean red pine was as efficient as in previous studies on forest trees. Moreover, the response to GS was higher than that to traditional selection regarding the annual genetic gain. Therefore, we conclude that the trained GS model is more effective than the traditional breeding methods for Korean red pines. We anticipate that the next generation of trees selected by GS will lay the foundation for the accelerated breeding of Korean red pine.

4.
Sci Data ; 10(1): 792, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949898

RESUMEN

Agastache rugosa, also known as Korean mint, is a perennial plant from the Lamiaceae family that is traditionally used for various ailments and contains antioxidant and antibacterial phenolic compounds. Molecular breeding of A. rugosa can enhance secondary metabolite production and improve agricultural traits, but progress in this field has been delayed due to the lack of chromosome-scale genome information. Herein, we constructed a chromosome-level reference genome using Nanopore sequencing and Hi-C technology, resulting in a final genome assembly with a scaffold N50 of 52.15 Mbp and a total size of 410.67 Mbp. Nine pseudochromosomes accounted for 89.1% of the predicted genome. The BUSCO analysis indicated a high level of completeness in the assembly. Repeat annotation revealed 561,061 repeat elements, accounting for 61.65% of the genome, with Copia and Gypsy long terminal repeats being the most abundant. A total of 26,430 protein-coding genes were predicted, with an average length of 1,184 bp. The availability of this chromosome-scale genome will advance our understanding of A. rugosa's genetic makeup and its potential applications in various industries.


Asunto(s)
Genoma de Planta , Mentha , Cromosomas , Mentha/genética , Anotación de Secuencia Molecular , Filogenia , República de Corea
5.
J Adv Res ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37926145

RESUMEN

INTRODUCTION: Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants. OBJECTIVES: This study aims to manipulate warm temperature-induced elongation of plants at the post-translational level using phyB variants with dark reversion, the expression of which is subjected to heat stress. METHODS: The thermosensitive growth response of Arabidopsis was manipulated by expressing the single amino acid substitution variant of phyB (phyB[G515E]), which exhibited a lower dark reversion rate than wild-type phyB. Other variants with slow (phyB[G564E]) or rapid (phyB[S584F]) dark reversion or light insensitivity (phyB[G767R]) were also included in this study for comparison. Warming-induced transient expression of phyB variants was achieved using heat shock-inducible promoters. Arabidopsis PHYB[G515E] and PHYB[G564E] were also constitutively expressed in rice in an attempt to manipulate the heat sensitivity of a monocotyledonous plant species. RESULTS: At an elevated temperature, Arabidopsis seedlings transiently expressing PHYB[G515E] under the control of a heat shock-inducible promoter exhibited shorter hypocotyls than those expressing PHYB and other PHYB variant genes. This warm temperature-insensitive growth was related to the lowered PIF4 and auxin responses. In addition, transgenic rice seedlings expressing Arabidopsis PHYB[G515E] and PHYB[G564E] showed warm temperature-insensitive shoot growth. CONCLUSION: Transient expression of phyB variants with altered dark reversion rates could serve as an effective optogenetic technique for manipulating PIF4-auxin-mediated thermomorphogenic responses in plants.

6.
Genes (Basel) ; 14(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38003017

RESUMEN

M. incognita, a root-knot nematode (RKN), infects the roots of several important food crops, including sweet potato (Ipomoea batatas Lam.), and severely reduces yields. However, the molecular mechanisms underlying infection remain unclear. Previously, we investigated differential responses to RKN invasion in susceptible and resistant sweet potato cultivars through RNA-seq-based transcriptome analysis. In this study, gene expression similarities and differences were examined in RKN-susceptible sweet potato cultivars during the compatible response to RKN infection. Three susceptible cultivars investigated in previous research were used: Dahomi (DHM), Shinhwangmi (SHM), and Yulmi (YM). Of the three cultivars, YM had the highest number of genes with altered expression in response to infection. YM was also the cultivar with the highest susceptibility to RKN. Comparisons among cultivars identified genes that were regulated in more than one cultivar upon infection. Pairwise comparisons revealed that YM and DHM shared the most regulated genes, whereas YM and SHM shared the lowest number of regulated genes. Five genes were up-regulated, and two were down-regulated, in all three cultivars. Among these, four genes were highly up-regulated in all cultivars: germin-like protein, anthranilate synthase α subunit, isocitrate lyase, and uncharacterized protein. Genes were also identified that were uniquely regulated in each cultivar in response to infection, suggesting that susceptible cultivars respond to infection through shared and cultivar-specific pathways. Our findings expand the understanding of the compatible response to RKN invasion in sweet potato roots and provide useful information for further research on RKN defense mechanisms.


Asunto(s)
Ipomoea batatas , Infecciones por Nematodos , Tylenchoidea , Animales , Transcriptoma/genética , Ipomoea batatas/genética , Tylenchoidea/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica
7.
Plant Physiol Biochem ; 201: 107870, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37442050

RESUMEN

Panax ginseng is one of the most famous pharmaceutical plants in Asia. Ginseng plants grown in mountain have longer longevity which ensures higher accumulation of ginsenoside components than those grown in farms. However, wild-simulated ginseng over certain age cannot be easily distinguished in morphology. To identify transcriptomic mechanism of ginsenoside accumulation in older wild-simulated ginseng without large phenotype change, we performed comparative transcriptome analysis for leaf, shoot, and root tissues of 7-yr-old and 13yr-old wild-simulated ginseng. Of 559 differentially expressed genes (DEGs) in comparison between 7-yr-old and 13yr-old wild-simulated ginseng, 280 leaf-, 103 shoot-, and 164 root-mainly expressing genes were found to be changed in transcript level according to age. Functional analysis revealed that pentose-phosphate shunt and abscisic acid responsive genes were up-regulated in leaf tissues of 7-yr-old ginseng while defense responsive genes were up-regulated in root tissues of 13-yr-old ginseng. Quantitative real-time PCR revealed that jasmonic acid responsive genes, ERDL6, and some UGTs were up-regulated in 13-yr-old ginseng in higher order lateral root tissues. These data suggest that bacterial stimulation in mountain region can enhance the expression of several genes which might support minor ginsenoside biosynthesis.


Asunto(s)
Ginsenósidos , Panax , Transcriptoma/genética , Ginsenósidos/genética , Ginsenósidos/metabolismo , Panax/genética , Panax/metabolismo , Perfilación de la Expresión Génica , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
8.
J Ginseng Res ; 47(3): 469-478, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37252286

RESUMEN

Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

9.
Genomics ; 114(6): 110514, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36332840

RESUMEN

Omphalotus guepiniiformis, a bioluminescent mushroom species, is a source of the potentially valuable anticancer chemical. To provide genome information, we de novo assembled the high-quality O. guepiniiformis genome using two Next-Generation sequencing techniques, PacBio and Illumina sequencing. Our draft O. guepiniiformis genome comprises 42.5 Mbp of sequence with only 80 contigs and an N50 sequence length of over 1 Mbp. There were 15,554 predicted coding genes, and 7693 genes were functionally annotated with Gene Ontology terms. We performed a genomic study focusing on mushroom bioluminescent pathway cluster genes by comparing 17 luminescent and 23 non-luminescent Agaricales species belonging to 23 genera. Synteny analysis of genomic regions near the luminescent pathway cluster genes inferred that the Omphalotus lineage was genus-specific. In summary, our de novo assembled O. guepiniiformis genome provides significant biological insights into this organism, including the evolution of the luciferase gene block, and forms the basis for future analyses.


Asunto(s)
Agaricales , Agaricales/genética
10.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232949

RESUMEN

High temperature is one of the most significant abiotic stresses reducing crop yield and quality by inhibiting plant growth and development. Global warming has recently increased the frequency of heat waves, which negatively impacts agricultural fields. Despite numerous studies on heat stress responses and signal transduction in model plant species, the molecular mechanism underlying thermomorphogenesis in Panax ginseng remains largely unknown. Here, we investigated the high temperature response of ginseng at the phenotypic and molecular levels. Both the primary shoot growth and secondary root growth of ginseng plants were significantly reduced at high temperature. Histological analysis revealed that these decreases in shoot and root growth were caused by decreases in cell elongation and cambium stem cell activity, respectively. Analysis of P. ginseng RNA-seq data revealed that heat-stress-repressed stem and root growth is closely related to changes in photosynthesis, cell wall organization, cell wall loosening, and abscisic acid (ABA) and jasmonic acid (JA) signaling. Reduction in both the light and dark reactions of photosynthesis resulted in defects in starch granule development in the storage parenchymal cells of the main tap root. Thus, by combining bioinformatics and histological analyses, we show that high temperature signaling pathways are integrated with crucial biological processes that repress stem and root growth in ginseng, providing novel insight into the heat stress response mechanism of P. ginseng.


Asunto(s)
Panax , Ácido Abscísico/metabolismo , Panax/metabolismo , Fotosíntesis/fisiología , Raíces de Plantas/metabolismo , Almidón/metabolismo , Temperatura
11.
J Fungi (Basel) ; 8(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012874

RESUMEN

Agaricus bisporus is one of the world's most popular edible mushrooms, including in South Korea. We performed de novo genome assembly with a South Korean white-colored cultivar of A. bisporus, KMCC00540. After generating a scaffold-level genomic sequence, we inferred chromosome-level assembly by genomic synteny analysis with the representative A. bisporus strains H97 and H39. The KMCC00540 genome had 13 pseudochromosomes comprising 33,030,236 bp mostly covering both strains. A comparative genomic analysis with cultivar H97 indicated that most genomic regions and annotated proteins were shared (over 90%), ensuring that our cultivar could be used as a representative genome. However, A. bisporus suffers from browning even from only a slight mechanical stimulus during transportation, which significantly lowers its commercial value. To identify which genes respond to a mechanical stimulus that induces browning, we performed a time-course transcriptome analysis based on the de novo assembled genome. Mechanical stimulus induces up-regulation in long fatty acid ligase activity-related genes, as well as melanin biosynthesis genes, especially at early time points. In summary, we assembled the chromosome-level genomic information on a Korean strain of A. bisporus and identified which genes respond to a mechanical stimulus, which provided key hints for improving the post-harvest biological control of A. bisporus.

12.
Physiol Plant ; 174(3): e13734, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35699652

RESUMEN

Abscisic acid (ABA) is a phytohormone that mediates stress responses and regulates plant development. Several ATP-binding cassette (ABC) transporters in the G subfamily of ABC (ABCG) proteins have been reported to transport ABA. We investigated whether there are any other ABCG proteins that mediate plant developmental processes regulated by ABA in Arabidopsis (Arabidopsis thaliana). The ABCG27 gene was upregulated in response to exogenous ABA treatment. The abcg27 knockout mutant exhibited two developmental defects: epinastic leaves and abnormally long pistils, which reduced fertility and silique length. ABCG27 expression was induced threefold when flower buds were exposed to exogenous ABA, and the promoter of ABCG27 had two ABA-responsive elements. ABA content in the pistil and true leaves were increased in the abcg27 knockout mutant. Detached abcg27 pistils exposed to exogenous ABA grew longer than those of the wild-type control. ABCG27 fused to GFP localized to the plasma membrane when expressed in Arabidopsis mesophyll protoplasts. A transcriptome analysis of the pistils and true leaves of the wild type and abcg27 knockout mutant revealed that the expression of organ development-related genes changed in the knockout mutant. In particular, the expression of trans-acting small interference (ta-si) RNA processing enzyme genes, which regulate flower and leaf development, was low in the knockout mutant. Together, these results suggest that ABCG27 most likely function as an ABA transporter at the plasma membrane, modulating ABA levels and thereby regulating the development of the pistils and leaves under normal, non-stressed conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
13.
New Phytol ; 235(6): 2466-2480, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35689444

RESUMEN

The timely removal of end-of-purpose flowering organs is as essential for reproduction and plant survival as timely flowering. Despite much progress in understanding the molecular mechanisms of floral organ abscission, little is known about how various environmental factors are integrated into developmental programmes that determine the timing of abscission. Here, we investigated whether reactive oxygen species (ROS), mediators of various stress-related signalling pathways, are involved in determining the timing of abscission and, if so, how they are integrated with the developmental pathway in Arabidopsis thaliana. MSD2, encoding a secretory manganese superoxide dismutase, was preferentially expressed in the abscission zone of flowers, and floral organ abscission was accelerated by the accumulation of ROS in msd2 mutants. The expression of the genes encoding the receptor-like kinase HAESA (HAE) and its cognate peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), the key signalling components of abscission, was accelerated in msd2 mutants, suggesting that MSD2 acts upstream of IDA-HAE. Further transcriptome and pharmacological analyses revealed that abscisic acid and nitric oxide facilitate abscission by regulating the expression of IDA and HAE during MSD2-mediated signalling. These results suggest that MSD2-dependent ROS metabolism is an important regulatory point integrating environmental stimuli into the developmental programme leading to abscission.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Reproducción
14.
Front Plant Sci ; 13: 891783, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651765

RESUMEN

Background: Vicia bungei is an economically important forage crop in South Korea and China. Although detailed genetic and genomic data can improve population genetic studies, conservation efforts, and improved breeding of crops, few such data are available for Vicia species in general and none at all for V. bungei. Therefore, the main objectives of this study were to sequence, assemble, and annotate V. bungei chloroplast genome and to identify simple sequence repeats (SSRs) as polymorphic genetic markers. Results: The whole-genome sequence of V. bungei was generated using an Illumina MiSeq platform. De novo assembly of complete chloroplast genome sequences was performed for the low-coverage sequence using CLC Genome Assembler with a 200-600-bp overlap size. Vicia bungei chloroplast genome was 130,796-bp long. The genome lacked an inverted repeat unit and thus resembled those of species in the inverted repeat-lacking clade within Fabaceae. Genome annotation using Dual OrganellarGenoMe Annotator (DOGMA) identified 107 genes, comprising 75 protein-coding, 28 transfer RNA, and 4 ribosomal RNA genes. In total, 432 SSRs were detected in V. bungei chloroplast genome, including 64 mononucleotides, 14 dinucleotides, 5 trinucleotides, 4 tetranucleotides, 233 pentanucleotides, 90 hexanucleotides, and 14 complex repeated motifs. These were used to develop 232 novel chloroplast SSR markers, 39 of which were chosen at random to test amplification and genetic diversity in Vicia species (20 accessions from seven species). The unweighted pair group method with arithmetic mean cluster analysis identified seven clusters at the interspecies level and intraspecific differences within clusters. Conclusion: The complete chloroplast genome sequence of V. bungei was determined. This reference genome should facilitate chloroplast resequencing and future searches for additional genetic markers using population samples. The novel chloroplast genome resources and SSR markers will greatly contribute to the conservation of the genus Vicia and facilitate genetic and evolutionary studies of this genus and of other higher plants.

15.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35409041

RESUMEN

Anthocyanins are generally accumulated within a few layers, including the epidermal cells of leaves and stems in plants. Solanum tuberosum cv. 'Jayoung' (hereafter, JY) is known to accumulate anthocyanin both in inner tissues and skins. We discovered that anthocyanin accumulation in the inner tissues of JY was almost diminished (more than 95% was decreased) in tuber induction condition. To investigate the transcriptomic mechanism of anthocyanin accumulation in JY flesh, which can be modulated by growth condition, we performed mRNA sequencing with white-colored flesh tissue of Solanum tuberosum cv. 'Atlantic' (hereafter, 'Daeseo', DS) grown under canonical growth conditions, a JY flesh sample grown under canonical growth conditions, and a JY flesh sample grown under tuber induction conditions. We could identify 36 common DEGs (differentially expressed genes) in JY flesh from canonical growth conditions that showed JY-specifically increased or decreased expression level. These genes were enriched with flavonoid biosynthetic process terms in GO analysis, as well as gene set enrichment analysis (GSEA) analysis. Further in silico analysis on expression levels of anthocyanin biosynthetic genes including rate-limiting genes such as StCHS and StCHI followed by RT-PCR and qRT-PCR analysis showed a strong positive correlation with the observed phenotypes. Finally, we identified StWRKY44 from 36 common DEGs as a possible regulator of anthocyanin accumulation, which was further supported by network analysis. In conclusion, we identified StWRKY44 as a putative regulator of tuber-induction-dependent anthocyanin accumulation.


Asunto(s)
Antocianinas , Solanum tuberosum , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Transcriptoma
16.
New Phytol ; 235(2): 595-610, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35383411

RESUMEN

Microalgae accumulate high levels of oil under stress, but the underlying biosynthetic pathways are not fully understood. We sought to identify key regulators of lipid metabolism under stress conditions. We found that the Chlamydomonas reinhardtii gene encoding the MYB-type transcription factor MYB1 is highly induced under stress conditions. Two myb1 mutants accumulated less total fatty acids and storage lipids than their parental strain upon nitrogen (N) depletion. Transcriptome analysis revealed that genes involved in lipid metabolism are highly enriched in the wild-type but not in the myb1-1 mutant after 4 h of N depletion. Among these genes were several involved in the transport of fatty acids from the chloroplast to the endoplasmic reticulum (ER): acyl-ACP thioesterase (FAT1), Fatty Acid EXporters (FAX1, FAX2), and long-chain acyl-CoA synthetase1 (LACS1). Furthermore, overexpression of FAT1 in the chloroplast increased lipid production. These results suggest that, upon N depletion, MYB1 promotes lipid accumulation by facilitating fatty acid transport from the chloroplast to the ER. This study identifies MYB1 as an important positive regulator of lipid accumulation in C. reinhardtii upon N depletion, adding another player to the established regulators of this process, including NITROGEN RESPONSE REGULATOR 1 (NRR1) and TRIACYLGLYCEROL ACCUMULATION REGULATOR 1 (TAR1).


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/genética , Nitrógeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo
17.
Plant Cell ; 34(2): 910-926, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34893905

RESUMEN

Photosynthetic organisms are exposed to various environmental sources of oxidative stress. Land plants have diverse mechanisms to withstand oxidative stress, but how microalgae do so remains unclear. Here, we characterized the Chlamydomonas reinhardtii basic leucine zipper (bZIP) transcription factor BLZ8, which is highly induced by oxidative stress. Oxidative stress tolerance increased with increasing BLZ8 expression levels. BLZ8 regulated the expression of genes likely involved in the carbon-concentrating mechanism (CCM): HIGH-LIGHT ACTIVATED 3 (HLA3), CARBONIC ANHYDRASE 7 (CAH7), and CARBONIC ANHYDRASE 8 (CAH8). BLZ8 expression increased the photosynthetic affinity for inorganic carbon under alkaline stress conditions, suggesting that BLZ8 induces the CCM. BLZ8 expression also increased the photosynthetic linear electron transfer rate, reducing the excitation pressure of the photosynthetic electron transport chain and in turn suppressing reactive oxygen species (ROS) production under oxidative stress conditions. A carbonic anhydrase inhibitor, ethoxzolamide, abolished the enhanced tolerance to alkaline stress conferred by BLZ8 overexpression. BLZ8 directly regulated the expression of the three target genes and required bZIP2 as a dimerization partner in activating CAH8 and HLA3. Our results suggest that a CCM-mediated increase in the CO2 supply for photosynthesis is critical to minimize oxidative damage in microalgae, since slow gas diffusion in aqueous environments limits CO2 availability for photosynthesis, which can trigger ROS formation.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Carbono/metabolismo , Chlamydomonas reinhardtii/fisiología , Estrés Oxidativo/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Anhidrasas Carbónicas/metabolismo , Chlamydomonas reinhardtii/citología , Regulación de la Expresión Génica , Peroxidación de Lípido , Estrés Oxidativo/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445398

RESUMEN

Gibberellins (GAs) are an important group of phytohormones associated with diverse growth and developmental processes, including cell elongation, seed germination, and secondary growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling pathways and related genes in model plant species. However, functional genomics analyses of GA signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-known economical and medicinal importance. Here, we conducted functional characterization of GA receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots. We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s (PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved. Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA) response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary root growth in P. ginseng.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Giberelinas/farmacología , Panax/crecimiento & desarrollo , Receptores de Superficie Celular/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación con Pérdida de Función , Panax/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Dominios Proteicos , Receptores de Superficie Celular/química , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos , Triazoles/farmacología
19.
J Fungi (Basel) ; 7(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064696

RESUMEN

Agaricus bisporus is a globally cultivated mushroom with high economic value. Despite its widespread cultivation, commercial button mushroom strains have little genetic diversity and discrimination of strains for identification and breeding purposes is challenging. Molecular markers suitable for diversity analyses of germplasms with similar genotypes and discrimination between accessions are needed to support the development of new varieties. To develop cleaved amplified polymorphic sequences (CAPs) markers, single nucleotide polymorphism (SNP) mining was performed based on the A. bisporus genome and resequencing data. A total of 70 sets of CAPs markers were developed and applied to 41 A. bisporus accessions for diversity, multivariate, and population structure analyses. Of the 70 SNPs, 62.85% (44/70) were transitions (G/A or C/T) and 37.15% (26/70) were transversions (A/C, A/T, C/G, or G/T). The number of alleles per locus was 1 or 2 (average = 1.9), and expected heterozygosity and gene diversity were 0.0-0.499 (mean = 0.265) and 0.0-0.9367 (mean = 0.3599), respectively. Multivariate and cluster analyses of accessions produced similar groups, with F-statistic values of 0.134 and 0.153 for distance-based and model-based groups, respectively. A minimum set of 10 markers optimized for accession identification were selected based on high index of genetic diversity (GD, range 0.299-0.499) and major allele frequency (MAF, range 0.524-0.817). The CAPS markers can be used to evaluate genetic diversity and population structure and will facilitate the management of emerging genetic resources.

20.
Front Plant Sci ; 12: 671677, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025707

RESUMEN

Sweetpotato (Ipomoea batatas [L.] Lam) is an economically important, nutrient- and pigment-rich root vegetable used as both food and feed. Root-knot nematode (RKN), Meloidogyne incognita, causes major yield losses in sweetpotato and other crops worldwide. The identification of genes and mechanisms responsible for resistance to RKN will facilitate the development of RKN resistant cultivars not only in sweetpotato but also in other crops. In this study, we performed RNA-seq analysis of RKN resistant cultivars (RCs; Danjami, Pungwonmi and Juhwangmi) and susceptible cultivars (SCs; Dahomi, Shinhwangmi and Yulmi) of sweetpotato infected with M. incognita to examine the induced and constitutive defense response-related transcriptional changes. During induced defense, genes related to defense and secondary metabolites were induced in SCs, whereas those related to receptor protein kinase signaling and protein phosphorylation were induced in RCs. In the uninfected control, genes involved in proteolysis and biotic stimuli showed differential expression levels between RCs and SCs during constitutive defense. Additionally, genes related to redox regulation, lipid and cell wall metabolism, protease inhibitor and proteases were putatively identified as RKN defense-related genes. The root transcriptome of SCs was also analyzed under uninfected conditions, and several potential candidate genes were identified. Overall, our data provide key insights into the transcriptional changes in sweetpotato genes that occur during induced and constitutive defense responses against RKN infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...